Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 452
Filtrar
1.
Viruses ; 16(4)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38675966

RESUMO

A devastating bluetongue (BT) epidemic caused by bluetongue virus serotype 3 (BTV-3) has spread throughout most of the Netherlands within two months since the first infection was officially confirmed in the beginning of September 2023. The epidemic comes with unusually strong suffering of infected cattle through severe lameness, often resulting in mortality or euthanisation for welfare reasons. In total, tens of thousands of sheep have died or had to be euthanised. By October 2023, more than 2200 locations with ruminant livestock were officially identified to be infected with BTV-3, and additionally, ruminants from 1300 locations were showing BTV-associated clinical symptoms (but not laboratory-confirmed BT). Here, we report on the spatial spread and dynamics of this BT epidemic. More specifically, we characterized the distance-dependent intensity of the between-holding transmission by estimating the spatial transmission kernel and by comparing it to transmission kernels estimated earlier for BTV-8 transmission in Northwestern Europe in 2006 and 2007. The 2023 BTV-3 kernel parameters are in line with those of the transmission kernel estimated previously for the between-holding spread of BTV-8 in Europe in 2007. The 2023 BTV-3 transmission kernel has a long-distance spatial range (across tens of kilometres), evidencing that in addition to short-distance dispersal of infected midges, other transmission routes such as livestock transports probably played an important role.


Assuntos
Vírus Bluetongue , Bluetongue , Epidemias , Sorogrupo , Animais , Bluetongue/epidemiologia , Bluetongue/transmissão , Bluetongue/virologia , Vírus Bluetongue/classificação , Países Baixos/epidemiologia , Ovinos , Bovinos , Doenças dos Bovinos/virologia , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/transmissão
2.
J Virol ; 96(13): e0053122, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35727032

RESUMO

Segmented RNA viruses are a taxonomically diverse group that can infect plant, wildlife, livestock and human hosts. A shared feature of these viruses is the ability to exchange genome segments during coinfection of a host by a process termed "reassortment." Reassortment enables rapid evolutionary change, but where transmission involves a biological arthropod vector, this change is constrained by the selection pressures imposed by the requirement for replication in two evolutionarily distant hosts. In this study, we use an in vivo, host-arbovirus-vector model to investigate the impact of reassortment on two phenotypic traits, virus infection rate in the vector and virulence in the host. Bluetongue virus (BTV) (Reoviridae) is the causative agent of bluetongue (BT), an economically important disease of domestic and wild ruminants and deer. The genome of BTV comprises 10 linear segments of dsRNA, and the virus is transmitted between ruminants by Culicoides biting midges (Diptera: Ceratopogonidae). Five strains of BTV representing three serotypes (BTV-1, BTV-4, and BTV-8) were isolated from naturally infected ruminants in Europe and ancestral/reassortant lineage status assigned through full genome sequencing. Each strain was then assessed in parallel for the ability to replicate in vector Culicoides and to cause BT in sheep. Our results demonstrate that two reassortment strains, which themselves became established in the field, had obtained high replication ability in C. sonorensis from one of the ancestral virus strains, which allowed inferences of the genome segments conferring this phenotypic trait. IMPORTANCE Reassortment between virus strains can lead to major shifts in the transmission parameters and virulence of segmented RNA viruses, with consequences for spread, persistence, and impact. The ability of these pathogens to adapt rapidly to their environment through this mechanism presents a major challenge in defining the conditions under which emergence can occur. Utilizing a representative mammalian host-insect vector infection and transmission model, we provide direct evidence of this phenomenon in closely related ancestral and reassortant strains of BTV. Our results demonstrate that efficient infection of Culicoides observed for one of three ancestral BTV strains was also evident in two reassortant strains that had subsequently emerged in the same ecosystem.


Assuntos
Vetores Artrópodes , Vírus Bluetongue , Bluetongue , Ceratopogonidae , Doenças dos Ovinos , Animais , Vetores Artrópodes/virologia , Bluetongue/transmissão , Bluetongue/virologia , Vírus Bluetongue/classificação , Vírus Bluetongue/genética , Vírus Bluetongue/patogenicidade , Ceratopogonidae/virologia , Cervos , Fenótipo , Vírus Reordenados/metabolismo , Ovinos , Doenças dos Ovinos/transmissão , Doenças dos Ovinos/virologia , Replicação Viral
3.
J Virol ; 96(3): e0161421, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34787454

RESUMO

Bluetongue, caused by bluetongue virus (BTV), is a widespread arthropod-borne disease of ruminants that entails a recurrent threat to the primary sector of developed and developing countries. In this work, we report modified vaccinia virus Ankara (MVA) and ChAdOx1-vectored vaccines designed to simultaneously express the immunogenic NS1 protein and/or NS2-Nt, the N-terminal half of protein NS2 (NS21-180). A single dose of MVA or ChAdOx1 expressing NS1-NS2-Nt improved the protection conferred by NS1 alone in IFNAR(-/-) mice. Moreover, mice immunized with ChAdOx1/MVA-NS1, ChAdOx1/MVA-NS2-Nt, or ChAdOx1/MVA-NS1-NS2-Nt developed strong cytotoxic CD8+ T-cell responses against NS1, NS2-Nt, or both proteins and were fully protected against a lethal infection with BTV serotypes 1, 4, and 8. Furthermore, although a single immunization with ChAdOx1-NS1-NS2-Nt partially protected sheep against BTV-4, the administration of a booster dose of MVA-NS1-NS2-Nt promoted a faster viral clearance, reduction of the period and level of viremia and also protected from the pathology produced by BTV infection. IMPORTANCE Current BTV vaccines are effective but they do not allow to distinguish between vaccinated and infected animals (DIVA strategy) and are serotype specific. In this work we have develop a DIVA multiserotype vaccination strategy based on adenoviral (ChAdOx1) and MVA vaccine vectors, the most widely used in current phase I and II clinical trials, and the conserved nonstructural BTV proteins NS1 and NS2. This immunization strategy solves the major drawbacks of the current marketed vaccines.


Assuntos
Vírus Bluetongue/imunologia , Bluetongue/prevenção & controle , Vetores Genéticos/genética , Vaccinia virus/genética , Proteínas não Estruturais Virais/genética , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vírus Bluetongue/classificação , Vetores Genéticos/imunologia , Imunidade Celular , Imunização , Imunogenicidade da Vacina , Sorogrupo , Ovinos , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Vaccinia virus/imunologia , Proteínas não Estruturais Virais/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
4.
Viruses ; 13(8)2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34452321

RESUMO

Bluetongue (BT) is a severe and economically important disease of ruminants that is widely distributed around the world, caused by the bluetongue virus (BTV). More than 28 different BTV serotypes have been identified in serum neutralisation tests (SNT), which, along with geographic variants (topotypes) within each serotype, reflect differences in BTV outer-capsid protein VP2. VP2 is the primary target for neutralising antibodies, although the basis for cross-reactions and serological variations between and within BTV serotypes is poorly understood. Recombinant BTV VP2 proteins (rVP2) were expressed in Nicotiana benthamiana, based on sequence data for isolates of thirteen BTV serotypes (primarily from Europe), including three 'novel' serotypes (BTV-25, -26 and -27) and alternative topotypes of four serotypes. Cross-reactions within and between these viruses were explored using rabbit anti-rVP2 sera and post BTV-infection sheep reference-antisera, in I-ELISA (with rVP2 target antigens) and SNT (with reference strains of BTV-1 to -24, -26 and -27). Strong reactions were generally detected with homologous rVP2 proteins or virus strains/serotypes. The sheep antisera were largely serotype-specific in SNT, but more cross-reactive by ELISA. Rabbit antisera were more cross-reactive in SNT, and showed widespread, high titre cross-reactions against homologous and heterologous rVP2 proteins in ELISA. Results were analysed and visualised by antigenic cartography, showing closer relationships in some, but not all cases, between VP2 topotypes within the same serotype, and between serotypes belonging to the same 'VP2 nucleotype'.


Assuntos
Vírus Bluetongue/classificação , Vírus Bluetongue/genética , Proteínas do Capsídeo/classificação , Proteínas do Capsídeo/genética , Reações Cruzadas/imunologia , Sorogrupo , Animais , Antígenos Virais/imunologia , Bluetongue/imunologia , Bluetongue/virologia , Vírus Bluetongue/imunologia , Proteínas do Capsídeo/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Coelhos/imunologia , Ruminantes/imunologia , Sorotipagem , Ovinos/imunologia , Nicotiana/genética
5.
Viruses ; 13(5)2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-34063508

RESUMO

Arboviruses such as bluetongue virus (BTV) replicate in arthropod vectors involved in their transmission between susceptible vertebrate-hosts. The "classical" BTV strains infect and replicate effectively in cells of their insect-vectors (Culicoides biting-midges), as well as in those of their mammalian-hosts (ruminants). However, in the last decade, some "atypical" BTV strains, belonging to additional serotypes (e.g., BTV-26), have been found to replicate efficiently only in mammalian cells, while their replication is severely restricted in Culicoides cells. Importantly, there is evidence that these atypical BTV are transmitted by direct-contact between their mammalian hosts. Here, the viral determinants and mechanisms restricting viral replication in Culicoides were investigated using a classical BTV-1, an "atypical" BTV-26 and a BTV-1/BTV-26 reassortant virus, derived by reverse genetics. Viruses containing the capsid of BTV-26 showed a reduced ability to attach to Culicoides cells, blocking early steps of the replication cycle, while attachment and replication in mammalian cells was not restricted. The replication of BTV-26 was also severely reduced in other arthropod cells, derived from mosquitoes or ticks. The data presented identifies mechanisms and potential barriers to infection and transmission by the newly emerged "atypical" BTV strains in Culicoides.


Assuntos
Vírus Bluetongue/classificação , Vírus Bluetongue/fisiologia , Proteínas do Capsídeo/metabolismo , Replicação Viral , Animais , Artrópodes , Vírus Bluetongue/isolamento & purificação , Vírus Bluetongue/ultraestrutura , Linhagem Celular , Células Cultivadas , Interações Hospedeiro-Patógeno , Sorogrupo , Ligação Viral , Replicação Viral/efeitos dos fármacos
6.
Virus Genes ; 57(4): 369-379, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34120252

RESUMO

The smallest polycistronic dsRNA segment-10 (S10) of bluetongue virus (BTV) encodes NS3/3A and putative NS5. The S10 sequence data of 46 Indian BTV field isolates obtained between 1985 and 2011 were determined and compared with the cognate sequences of global BTV strains. The largest ORF on S10 encodes NS3 (229 aa) and an amino-terminal truncated form of the protein (NS3A) and a putative NS5 (50-59 aa) due to alternate translation initiation site. The overall mean distance of the global NS3 was 0.1106 and 0.0269 at nt and deduced aa sequence, respectively. The global BTV strains formed four major clusters. The major cluster of Indian BTV strains was closely related to the viruses reported from Australia and China. A minor sub-cluster of Indian BTV strains were closely related to the USA strains and a few of the Indian strains were similar to the South African reference and vaccine strains. The global trait association of phylogenetic structure indicates the evolution of the global BTV S10 was not homogenous but rather represents a moderate level of geographical divergence. There was no evidence of an association between the virus and the host species, suggesting a random spread of the viruses. Conflicting selection pressure on the alternate coding sequences of the S10 was evident where NS3/3A might have evolved through strong purifying (negative) selection and NS5 through a positive selection. The presence of multiple positively selected codons on the putative NS5 may be advantageous for adaptation of the virus though their precise role is unknown.


Assuntos
Vírus Bluetongue/genética , Bluetongue/genética , RNA de Cadeia Dupla/genética , Proteínas não Estruturais Virais/genética , Animais , Austrália/epidemiologia , Bluetongue/patologia , Bluetongue/virologia , Vírus Bluetongue/classificação , China/epidemiologia , Vírus de RNA de Cadeia Dupla/classificação , Vírus de RNA de Cadeia Dupla/genética , Variação Genética/genética , Humanos , Índia/epidemiologia , Filogenia , Análise de Sequência de DNA , Ovinos/virologia
7.
Viruses ; 13(4)2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918924

RESUMO

Transmission of bluetongue (BT) virus serotype 8 (BTV-8) via artificial insemination of contaminated frozen semen from naturally infected bulls was investigated in two independent experiments. Healthy, BT negative heifers were hormonally synchronized and artificially inseminated at oestrus. In total, six groups of three heifers received semen from four batches derived from three bulls naturally infected with BTV-8. Each experiment included one control heifer that was not inseminated and that remained BT negative throughout. BTV viraemia and seroconversion were determined in 8 out of 18 inseminated heifers, and BTV was isolated from five of these animals. These eight heifers only displayed mild clinical signs of BT, if any at all, but six of them experienced pregnancy loss between weeks four and eight of gestation, and five of them became BT PCR and antibody positive. The other two infected heifers gave birth at term to two healthy and BT negative calves. The BT viral load varied among the semen batches used and this had a significant impact on the infection rate, the time of onset of viraemia post artificial insemination, and the gestational stage at which pregnancy loss occurred. These results, which confirm unusual features of BTV-8 infection, should not be extrapolated to infection with other BTV strains without thorough evaluation. This study also adds weight to the hypothesis that the re-emergence of BTV-8 in France in 2015 may be attributable to the use of contaminated bovine semen.


Assuntos
Vírus Bluetongue/fisiologia , Bluetongue/transmissão , Doenças dos Bovinos/transmissão , Doenças dos Bovinos/virologia , Inseminação Artificial/veterinária , Preservação do Sêmen/veterinária , Sêmen/virologia , Aborto Animal/virologia , Animais , Bluetongue/virologia , Vírus Bluetongue/classificação , Vírus Bluetongue/imunologia , Vírus Bluetongue/isolamento & purificação , Bovinos , Feminino , França , Inseminação Artificial/efeitos adversos , Masculino , Gravidez , Preservação do Sêmen/efeitos adversos , Sorogrupo
8.
Viruses ; 13(5)2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919269

RESUMO

We identified a putative novel atypical BTV serotype '36' in Swiss goat flocks. In the initial flock clinical signs consisting of multifocal purulent dermatitis, facial oedema and fever were observed. Following BTV detection by RT-qPCR, serotyping identified BTV-25 and also a putative novel BTV serotype in several of the affected goats. We successfully propagated the so-called "BTV-36-CH2019" strain in cell culture, developed a specific RT-qPCR targeting Segment 2, and generated the full genome by high-throughput sequencing. Furthermore, we experimentally infected goats with BTV-36-CH2019. Regularly, EDTA blood, serum and diverse swab samples were collected. Throughout the experiment, neither fever nor clinical disease was observed in any of the inoculated goats. Four goats developed BTV viremia, whereas one inoculated goat and the two contact animals remained negative. No viral RNA was detected in the swab samples collected from nose, mouth, eye, and rectum, and thus the experimental infection of goats using this novel BTV serotype delivered no indications for any clinical symptoms or vector-free virus transmission pathways. The subclinical infection of the four goats is in accordance with the reports for other atypical BTVs. However, the clinical signs of the initial goat flock did most likely not result from infection with the novel BTV-36-CH0219.


Assuntos
Vírus Bluetongue/classificação , Bluetongue/epidemiologia , Bluetongue/virologia , Ruminantes/virologia , Animais , Bluetongue/diagnóstico , Vírus Bluetongue/genética , Feminino , Doenças das Cabras/diagnóstico , Doenças das Cabras/epidemiologia , Doenças das Cabras/virologia , Cabras/virologia , Masculino , Filogenia , RNA Viral , Sorogrupo , Suíça/epidemiologia
9.
J Gen Virol ; 102(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33528348

RESUMO

Bluetongue (BT) is an insect-borne disease affecting domestic and wild ruminants. Bluetongue virus (BTV) is the causative agent of the BT disease. BT outbreaks have been widely recorded worldwide. However, in the South American subcontinent, accurate information about the disease and molecular epidemiology is still lacking because little effort has been made to cover the region. This study comprises an exhaustive phylogenetic analysis including all BTV sequences available in databases and reports new Argentinean sequences for Seg 8 and Seg 9. Maximum-likelihood phylogenetic analyses were conducted for Seg 2, Seg 3, Seg 6, Seg 7, Seg 8, Seg 9 and Seg 10. Throughout the study, wide circulation and genetic continuity along the American continent were detected. Also, reassortment events are reported, and the historical virus introduction path into and through South America is suggested.


Assuntos
Vírus Bluetongue/classificação , Vírus Bluetongue/genética , Bluetongue/virologia , Animais , Argentina/epidemiologia , Bluetongue/epidemiologia , Vírus Bluetongue/isolamento & purificação , Evolução Molecular , Epidemiologia Molecular , Filogenia , Vírus Reordenados/genética , América do Sul/epidemiologia
10.
J Gen Virol ; 102(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33331813

RESUMO

Bluetongue virus (BTV) is an arbovirus (genus: Orbivirus) that occurs worldwide. It infects domestic and wild ruminant species and can cause disease in livestock, producing high economic impact. Recently, it gained extra prominence throughout Europe, with disease occurring in regions traditionally free of BTV. BTV enters Australia from Southeast Asia via wind-borne infected Culicoides spp. The first Australian isolation was 1975 (BTV-20) and further serotypes were isolated between 1979-86 (BTV-1, -3, -9, -15, -16, -21, -23). Despite increased, more sensitive, monitoring, no more were detected in over two decades, implying a stable BTV episystem of eastern ancestry. Isolations of BTV-2, -7 and -5 then occurred between 2007-15, with the latter two possessing genome segments with high sequence identity to western isolates. We report on the first isolation and genomic characterization of BTV-12, which revealed that three more novel western topotype gene segments have entered northern Australia.


Assuntos
Vírus Bluetongue/classificação , Vírus Bluetongue/genética , Bluetongue/virologia , Doenças dos Bovinos/virologia , Animais , Austrália/epidemiologia , Bluetongue/epidemiologia , Vírus Bluetongue/isolamento & purificação , Bovinos , Doenças dos Bovinos/epidemiologia , Ceratopogonidae/virologia , Genes Virais , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Insetos Vetores/virologia , Filogenia , Ruminantes/virologia , Vigilância de Evento Sentinela , Sorotipagem , Ovinos
11.
Viruses ; 12(9)2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32878170

RESUMO

Bluetongue (BT) is an arthropod-borne viral disease of ruminants with serious trade and socio-economic implications. Although the disease has been reported in a number of countries in sub-Saharan Africa, there is currently no information on circulating serotypes and disease distribution in Zambia. Following surveillance for BT in domestic and wild ruminants in Zambia, BT virus (BTV) nucleic acid and antibodies were detected in eight of the 10 provinces of the country. About 40% (87/215) of pooled blood samples from cattle and goats were positive for BTV nucleic acid, while one hartebeest pool (1/43) was positive among wildlife samples. Sequence analysis of segment 2 revealed presence of serotypes 3, 5, 7, 12 and 15, with five nucleotypes (B, E, F, G and J) being identified. Segment 10 phylogeny showed Zambian BTV sequences clustering with Western topotype strains from South Africa, intimating likely transboundary spread of BTV in Southern Africa. Interestingly, two Zambian viruses and one isolate from Israel formed a novel clade, which we designated as Western topotype 4. The high seroprevalence (96.2%) in cattle from Lusaka and Central provinces and co-circulation of multiple serotypes showed that BT is widespread, underscoring the need for prevention and control strategies.


Assuntos
Vírus Bluetongue/isolamento & purificação , Bluetongue/virologia , Doenças dos Bovinos/virologia , Doenças das Cabras/virologia , Doenças dos Ovinos/virologia , Animais , Bluetongue/epidemiologia , Vírus Bluetongue/classificação , Vírus Bluetongue/genética , Bovinos , Doenças dos Bovinos/epidemiologia , Doenças das Cabras/epidemiologia , Cabras , Filogenia , Ovinos , Doenças dos Ovinos/epidemiologia , Zâmbia/epidemiologia
12.
Trop Anim Health Prod ; 52(6): 3907-3910, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32940854

RESUMO

Bluetongue (BT) is one of the important viral diseases of domestic and wild ruminants, especially small ruminants such as sheep. Out of the 29 BTV serotypes prevalent in the world, at least 24 of the serotypes are reported in India, either by virus isolation or serology. To better understand the seroprevalence of BTV, we conducted a comprehensive study in the main reservoir hosts of BTV, i.e., cattle and buffaloes of different age groups in Andhra Pradesh and Telangana states of India where the disease is majorly prevalent. A total of 321 blood samples collected from cattle and buffaloes during 2017-2018 were tested for group-specific BTV seroprevalence by c-ELISA, followed by type specific seroprevalence (against BTV-1, 2, 4, 5, 9, 12, 16, and 24) by serum neutralization test. Of the 311 BTV seropositive samples, 112, 98, 102, 127, 2, 113, 160, and 5 samples neutralized BTV-1, 2, 4, 5, 9, 12, 16, and 24, respectively. Twenty-nine samples could not neutralize any of the tested BTV serotypes. Majority of the sera neutralized more than one serotype, up to a maximum of six serotypes. Major finding of the study is detection of BTV serotypes not included in the commercial pentavalent inactivated vaccine. Regular surveillance of circulating serotypes, especially in sentinel reservoir hosts throughout the country can help in designing better multivalent vaccines with suitable vaccine strains, for specific geographic regions.


Assuntos
Vírus Bluetongue/isolamento & purificação , Bluetongue/epidemiologia , Búfalos , Doenças dos Bovinos/epidemiologia , Animais , Bluetongue/virologia , Vírus Bluetongue/classificação , Bovinos , Doenças dos Bovinos/virologia , Ensaio de Imunoadsorção Enzimática/veterinária , Índia/epidemiologia , Prevalência , Estudos Soroepidemiológicos
13.
Viruses ; 12(9)2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32899808

RESUMO

Recently, several so-called "atypical" Bluetongue virus (BTV) serotypes were discovered, including BTV-25 (Toggenburg virus), in Switzerland. Most "atypical" BTV were identified in small ruminants without clinical signs. In 2018, two goats from a holding in Germany tested positive for BTV-25 genome by RT-qPCR prior to export. After experimental inoculation of the two goats with the BTV-25 positive field blood samples for generation of reference materials, viremia could be observed in one animal. For the first time, the BTV-25-related virus was isolated in cell culture from EDTA-blood and the full genome of isolate "BTV-25-GER2018" could be generated. BTV-25-GER2018 was only incompletely neutralized by ELISA-positive sera. We could monitor the BTV-25 occurrence in the respective affected goat flock of approximately 120 goats over several years. EDTA blood samples were screened with RT-qPCR using a newly developed BTV-25 specific assay. For serological surveillance, serum samples were screened using a commercial cELISA. BTV-25-GER2018 was detected over 4.5 years in the goat flock with intermittent PCR-positivity in some animals, and with or without concomitantly detected antibodies since 2015. We could demonstrate the viral persistence of BTV-25-GER2018 in goats for up to 4.5 years, and the first BTV-25 isolate is now available for further characterization.


Assuntos
Vírus Bluetongue/isolamento & purificação , Bluetongue/virologia , Doenças das Cabras/virologia , Animais , Anticorpos Antivirais/sangue , Sangue/virologia , Bluetongue/sangue , Vírus Bluetongue/classificação , Vírus Bluetongue/genética , Vírus Bluetongue/crescimento & desenvolvimento , Genoma Viral , Doenças das Cabras/sangue , Cabras
14.
Vet Immunol Immunopathol ; 226: 110071, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32540689

RESUMO

Bluetongue is a fatal viral disease in ruminants and has serious economic impacts on the livestock industry. Interactions between bluetongue virus (BTV) and immune cells are interesting because of the unique scenarios in each combination of animal species/breed and viral virulence/serotype. This study investigated the immune response in bovine peripheral blood mononuclear cells (PBMC) infected by the BTV2 Taiwan strain. The replication of the virus was limited in monocytes and monocyte-derived macrophages (MDM), and lymphocytes were less permissive. The cytokine mRNA of IL-4 in PBMC was expressed earlier and in greater quantities than that of innate immunity (TNFα, IL-1ß) and cell mediated immunity (CMI) (IFNγ), and the IL-4 protein was stably present in the culture medium until 72 h post-infection (hpi). Even in MDM reconstituted with autologous lymphocyte (MDM-Lymphocyte), the IL-4 still had high mRNA expression level. The level of IgE antibody also increased at 24-72 hpi, suggestive of the engagement of type I hypersensitivity in the pathogenesis. The anti-viral activity contained in the culture supernatant was transferrable to recipient infected PBMC from other cows. However, in infected MDM largely free of lymphocytes, mRNA expressions of IL-1ß, TNFα and IL-12p40 were normally expressed from 6 to 48 hpi, supporting the notion that IL-4 elaborated by lymphocytes in PBMC mediated the inhibition of both innate immunity and CMI to BTV2. The sum of responses subsequent to the early IL-4 expression likely constitutes part of the unique scenario in the current BTV2-Cow experimental combination biased toward Th2 response.


Assuntos
Bluetongue/imunologia , Citocinas/imunologia , Hipersensibilidade Imediata/veterinária , Imunidade Inata , Leucócitos Mononucleares/virologia , Animais , Vírus Bluetongue/classificação , Bovinos , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/virologia , Meios de Cultura , Hipersensibilidade Imediata/imunologia , Imunidade Celular , Leucócitos Mononucleares/imunologia , Células Th1/imunologia , Células Th2/imunologia , Replicação Viral
15.
Viruses ; 12(1)2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31947695

RESUMO

In September 2016, clinical signs, indicative of bluetongue, were observed in sheep in Cyprus. Bluetongue virus serotype 8 (BTV-8) was detected in sheep, indicating the first incursion of this serotype into Cyprus. Following virus propagation, Nextera XT DNA libraries were sequenced on the MiSeq instrument. Full-genome sequences were obtained for five isolates CYP2016/01-05 and the percent of nucleotide sequence (% nt) identity between them ranged from 99.92% to 99.95%, which corresponded to a few (2-5) amino acid changes. Based on the complete coding sequence, the Israeli ISR2008/13 (98.42-98.45%) was recognised as the closest relative to CYP2016/01-05. However, the phylogenetic reconstruction of CYP2016/01-05 revealed that the possibility of reassortment in several segments: 4, 7, 9 and 10. Based on the available sequencing data, the incursion BTV-8 into Cyprus most likely occurred from the neighbouring countries (e.g., Israel, Lebanon, Syria, or Jordan), where multiple BTV serotypes were co-circulating rather than from Europe (e.g., France) where a single BTV-8 serotype was dominant. Supporting this hypothesis, atmospheric dispersion modelling identified wind-transport events during July-September that could have allowed the introduction of BTV-8 infected midges from Lebanon, Syria or Israel coastlines into the Larnaca region of Cyprus.


Assuntos
Vírus Bluetongue/genética , Bluetongue/epidemiologia , Surtos de Doenças/veterinária , Genoma Viral , Animais , Bluetongue/mortalidade , Bluetongue/transmissão , Vírus Bluetongue/classificação , Vírus Bluetongue/isolamento & purificação , Bovinos/virologia , Ceratopogonidae/virologia , Chipre/epidemiologia , Feminino , Cabras/virologia , Filogenia , RNA Viral/genética , Vírus Reordenados/genética , Análise de Sequência de DNA , Sorogrupo , Ovinos/virologia
16.
Viruses ; 13(1)2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33383902

RESUMO

Between 2015 and 2018, we identified the presence of three so-far-unknown Bluetongue virus (BTV) strains (BTV-MNG1/2018, BTV-MNG2/2016, and BTV-MNG3/2016) circulating in clinical healthy sheep and goats in Mongolia. Virus isolation from EDTA blood samples of BTV-MNG1/2018 and BTV-MNG3/2016 was successful on the mammalian cell line BSR using blood collected from surveillance. After experimental inoculation of goats with BTV-MNG2/2016 positive blood as inoculum, we observed viraemia in one goat and with the EDTA blood of the experimental inoculation, the propagation of BTV-MNG2/2016 in cell culture was successful on mammalian cell line BSR as well. However, virus isolation experiments for BTV-MNG2/2016 on KC cells were unsuccessful. Furthermore, we generated the complete coding sequence of all three novel Mongolian strains. For atypical BTV, serotyping via the traditional serum neutralization assay is not trivial. We therefore sorted the 'putative novel atypical serotypes' according to their segment-2 sequence identities and their time point of sampling. Hence, the BTV-MNG1/2018 isolate forms the 'putative novel atypical serotype' 33, the BTV-MNG3/2016 the 'putative novel atypical serotype' 35, whereas the BTV-MNG2/2016 strain belongs to the same putative novel atypical serotype '30' as BTV-XJ1407 from China.


Assuntos
Vírus Bluetongue/classificação , Bluetongue/epidemiologia , Bluetongue/virologia , Ruminantes/virologia , Animais , Bluetongue/imunologia , Vírus Bluetongue/genética , Vírus Bluetongue/imunologia , Linhagem Celular , Genoma Viral , Geografia Médica , Cabras , Mongólia , Testes de Neutralização , Filogenia , Coelhos , Sorogrupo , Sorotipagem , Ovinos
17.
Parasit Vectors ; 12(1): 464, 2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-31585545

RESUMO

BACKGROUND: Bluetongue disease of ruminants is a typical insect-borne disease caused by bluetongue virus (BTV) of the genus Orbivirus (family Reoviridae) and transmitted by some species of Culicoides (Diptera: Ceratopogonidae). Recently, the detection of BTV in yaks in high altitude meadows of the Shangri-La district of Yunnan Province, China, prompted an investigation of the Culicoides fauna as potential vectors of BTV. METHODS: A total of 806 Culicoides midges were collected by light trapping at three sites at altitudes ranging from 1800 to 3300 m. The species were identified based on morphology and the DNA sequences of cytochrome c oxidase subunit 1 (cox1). PCR and quantitative PCR following reverse transcription were used to test for the presence of BTV RNA in Culicoides spp. A phylogenetic analysis was used to analyze the cox1 sequences of some specimens. RESULTS: Four species dominated these collections and cox1 barcoding revealed that at least two of these appear to belong to species new to science. Culicoides tainanus and a cryptic species morphologically similar to C. tainanus dominated low altitude valley collections while C. nielamensis was the most abundant species in the high-altitude meadow. A species related to C. obsoletus occurred at all altitudes but did not dominate any of the collections. BTV RT-qPCR analysis detected BTV RNA in two specimens of C. tainanus, in one specimen closely related to C. tainanus and in one specimen closely related to C. obsoletus by barcode sequencing. CONCLUSIONS: This study suggests that BTV in high altitude areas of Yunnan is being transmitted by three species of Culicoides, two of which appear to be new to science. This research may be useful in improving understanding of the effects of global warming on arboviral disease epidemiology and further study is important in research into disease control and prevention.


Assuntos
Bluetongue/transmissão , Doenças dos Bovinos/transmissão , Ceratopogonidae/virologia , Insetos Vetores/virologia , Altitude , Animais , Sequência de Bases , Bluetongue/epidemiologia , Vírus Bluetongue/classificação , Vírus Bluetongue/genética , Vírus Bluetongue/isolamento & purificação , Bovinos , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/virologia , Ceratopogonidae/classificação , China/epidemiologia , Código de Barras de DNA Taxonômico/veterinária , DNA Viral/química , DNA Viral/isolamento & purificação , Complexo IV da Cadeia de Transporte de Elétrons/genética , Cabras , Insetos Vetores/classificação , Filogenia , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Transcrição Reversa , Ruminantes , Estudos Soroepidemiológicos
18.
Viruses ; 11(10)2019 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-31614799

RESUMO

The distribution of Bluetongue virus (BTV) in Europe can be represented by two distinct and interconnected epidemiological systems (episystems), each characterized by different ecological characteristics and vector species. This study investigated the vector competence of Italian populations of Culicoides imicola and Culicoides obsoletus/scoticus to some representative BTV strains after artificial oral infection. The BTV strains were selected according to their ability to spread to one or both episystems and included BTV-4 ITA, responsible of the recent Italian and French BTV-4 outbreaks; the BTV-2 strain which caused the first BTV incursion in Italy, Corsica, and Balearic Islands; BTV-4 MOR, responsible for the epidemic in Morocco; and BTV-8, the strain which spread through Europe between 2006 and 2008. Blood-soaked cotton pledgets and Hemotek membrane feeder using Parafilm® membrane were used to artificially feed midges. For each population/strain, recovery rates (positive/tested heads) were evaluated using serogroup- and serotype-specific RT-PCR. The trial demonstrated that, except for the Abruzzo population of C. obsoletus/C. scoticus, which was refractory to BTV-4 MOR infection, all the investigated Culicoides populations are susceptible to the selected BTV strains and that, if prompt vaccination programs and restriction measures had not been implemented, BTV-2 and BTV-4 MOR could have spread all over Europe.


Assuntos
Bluetongue/virologia , Ceratopogonidae/fisiologia , Ceratopogonidae/virologia , Surtos de Doenças/veterinária , Insetos Vetores/virologia , África/epidemiologia , Animais , Bluetongue/epidemiologia , Vírus Bluetongue/classificação , Europa (Continente)/epidemiologia , Feminino , Insetos Vetores/fisiologia , Itália/epidemiologia , Sorogrupo
19.
Viruses ; 11(7)2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31340459

RESUMO

Bluetongue (BT) is a non-contagious animal disease transmitted by midges of the Culicoides genus. The etiological agent is the BT virus (BTV) that induces a variety of clinical signs in wild or domestic ruminants. BT is included in the notifiable diseases list of the World Organization for Animal Health (OIE) due to its health impact on domestic ruminants. A total of 27 BTV serotypes have been described and additional serotypes have recently been identified. Since the 2000s, the distribution of BTV has changed in Europe and in the Mediterranean Basin, with continuous BTV incursions involving various BTV serotypes and strains. These BTV strains, depending on their origin, have emerged and spread through various routes in the Mediterranean Basin and/or in Europe. Consequently, control measures have been put in place in France to eradicate the virus or circumscribe its spread. These measures mainly consist of assessing virus movements and the vaccination of domestic ruminants. Many vaccination campaigns were first carried out in Europe using attenuated vaccines and, in a second period, using exclusively inactivated vaccines. This review focuses on the history of the various BTV strain incursions in France since the 2000s, describing strain characteristics, their origins, and the different routes of spread in Europe and/or in the Mediterranean Basin. The control measures implemented to address this disease are also discussed. Finally, we explain the circumstances leading to the change in the BTV status of France from BTV-free in 2000 to an enzootic status since 2018.


Assuntos
Vírus Bluetongue/fisiologia , Bluetongue/epidemiologia , Bluetongue/virologia , Animais , Bluetongue/prevenção & controle , Vírus Bluetongue/classificação , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/virologia , Europa (Continente)/epidemiologia , França/epidemiologia , Região do Mediterrâneo/epidemiologia , Vigilância em Saúde Pública , Sorogrupo
20.
Vaccine ; 37(20): 2656-2660, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-30979569

RESUMO

The Bluetongue virus serotype -8 (BTV-8) epizootic in Germany (2006-2008) was successfully eradicated, essentially by the massive application of commercially available inactivated BTV-8 vaccines. While a six-year antibody longevity of BTV antibodies post BTV-8 vaccination in cattle has been described previously, our study investigated the BTV-8-vaccine antibodies in cattle for up to eight years. In total, 157 bovine serum samples were analysed for the presence of group-specific BTV antibodies in both a commercial cELISA, and a BTV-8- specific serum neutralization test. A robust number of cattle were seropositive for group- and serotype-specific neutralising antibodies for five or more years. In selected animals, born and vaccinated in 2009 or later, the presence of BTV antibodies for up to eight years post BTV-8 vaccination could be confirmed. Our data also show, that booster vaccination prolonged the antibody longevity of vaccine-induced antibodies and the number of serologically positive cattle.


Assuntos
Anticorpos Antivirais/imunologia , Vírus Bluetongue/imunologia , Bluetongue/imunologia , Bluetongue/prevenção & controle , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Vírus Bluetongue/classificação , Bovinos , Ensaio de Imunoadsorção Enzimática , Imunização Secundária , Testes de Neutralização , Sorogrupo , Fatores de Tempo , Vacinação/veterinária , Vacinas Virais/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA